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JANUARY 1988

SIMONE - A DISCRETE EVENT SIMULATION SUPERVISOR

B.K. McMILLAN

ABSTRACT

The general discrete event simulation supervisory system
SIMONE is described. The facilities available and method of use are
detailed and illustrated with an example. It uses a three phase
system to control time and event selection, and provides additional
mathematical, random sampling and data collection facilities.
Systems with a PASCAL compiler should be able -to use SIMONE.
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INTRODUCTION

1. In the early 1960s, P.R. Hills of Bristol College of
Science and Technology generated the approach and necessary
programming for SIMON, a supervisory system and framework for
discrete event simulation (References 1 to 3). The approach
requires a model description based on three separate aspects or
phases (A, B and C), described later. To be effective, it requires
a supervisory system to handle lists, times and event selection.
The original supervisor was programmed in ALGOL as a set of
subroutines, collectively called SIMON. Practical evaluation and
expansion of the system was carried out in conjunction with a UK
steel company, Richard Thomas and Baldwins, primarily in their
Operational Research Department.

2. > Recently, while using a PASCAL version of SIMON for a
large simulation, the author found certain drawbacks and overcome
them by extending the system. More recently, the original
conversion to PASCAL was improved by using pointers for all lists
and further extended. The extensions include a generalisation and
enhanced flexibility of entity and event handling as well as a
removal of restrictions on histogram and interpolation table sizes.
This extended system was named SIMONE.

3. s-Advantages of the SIMONE system include:

-its portability (most computers of all sizes have
PASCAL available);

Jh_'its flexibility to handle most simulation tasks,
particularly discrete event models;

', )the associated advantages of structured programming
that its framework encourages; and

-4.-,the ease with which it can be learned and used.

4. Thus foexample models can be( d~veloped on a mainframe
with extensive debugging facilities and good compilation facilities
and then transferred to, say, a PC for regular use. Experience has
shown that its flexibility and structured approach allow very
significant savings in construction and debugging time as well as
improving the reliability and capacity to modify models after
initial use. Often, Operational Research workers and analysts find"
that a particular tool is used for a short period and then is not
needed for some considerable time. Under these conditions SIMONE is
an excellent choice because once understdod it is very easy to
re-learn and apply. \I-- jr-an.
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5. As documentation for SIMON is not readily available in
Australia, the whole SIMONE system and approach will be described in
this Memorandum.

6. When modelling a problem it is necessary to make decisions
such as form of information to be extracted from the model and
information available (i.e. the scope of the model) as well as time
available to do the job. These aspects are dealt with in many texts
and will not be covered here.

7. This paper assumes that the reader has a rudimentary
knowledge of PASCAL, and of the aims and limitations of simulation.

8. An example of cars being served is included to show the
general form of a SIMONE based simulation. It is recommended that
the example be studied in detail before using SIMONE.
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BASIC CONCEPTS

Discrete and Continuous Modelling

9. Simulation problems are often classified by the dominant
characteristic of parameter variation. Where parameters are
primarily influenced by specific events as might occur in product
manufacture through a series of processes, then discrete event
simulation should be appropriate. Where parameters vary steadily
with time as might occur in water flows through hydro schemes,
biological modelling or in macro economic areas, then continuous
simulation modelling should be appropriate. Generally speaking,
both types of problem can be handled with either type of approach,
but perhaps with a little more difficulty. In large and complex
problems this extra difficulty is likely to be detrimental to speed
of construction, general model comprehension, ease of debugging,
reliability and extendability. SIMONE has discrete event
orientation, and therefore does not include continuous simulation
language facilities such as integration and differential equation
solving unless these are available through the normal computer
library functions.

Describing The Model

10. Commonly, flow diagrams are drawn to describe the logic
and information flows and structures abstracted from the 'Real
World' situation. Without a suitable thinking framework such
diagrams can rapidly get out of control - in size, complexity,
readability, and consequently reliability.

11. SIMONE provides a formal or generalised flow diagram
(Figure 1) which fits all relevant real world circumstances, and
which encourages a structured approach to the problem. Control of
time is in phase A, while the modelling is in the phases B and C.

12. The real world problem being modelled must be conceptually
separated into a number of substantially independent time dependant
processes that will be called phase B events. These events are
linked in two ways: firstly by the entities being processed (i.e,
having the event happen to them) and secondly, by other linking
processes (phase C events), which happen as a result of phase B
events. The whole is co-ordinated by phase A wbich advances time
and indicates the next event. A very simple example might be a
train set, where a train is an entity, the timetable is phase A,
stops are phase B events, and a signal for entry to a section of
line is a phase C event. There is only a small requirement for
special terminology in contrast with some other systems.
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>Phase A: Select next eventj

1 1-77 1
V V V V V

F1 ....Phase B events .... F
A

I I I I

Phase C: 'linking' events and I
events dependent on B phase events

<V
Figure 1. GENERAL SIMONE BASED STRUCTURE

13. Such a formal representation is the kernel of the problem.
Simulations frequently repeat runs of the kernel with variations in
parameters. Thus the final program will include looping controls
and suitable initialisation components.

14. Tackling problems in this way allows the program to be
highly structured, and permits construction of stand-alone modules.
Other forms of flow diagram are still useful within this framework.
For example an object arriving for a service could be as in
Figure 2.

15. Relationships between entities and events can also be
portrayed using another form of diagram in which each entity is
represented by a circle and events of interest are placed on the
circle. The example is illustrated using this method in Figure 3.
Note that a number of events can be collapsed into a single phase B
event if convenient.
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object Arrives

YES

Instruct service
B event to start
with this object
after delay 0

Eif

of arrival of thenext object and
instruct another
B event to occur
at that time

Figure 2. A PHASE B EVENT FLOW DIAGRA



CSB Memo 2 6

Arrive Leave area~~of interest /

Finish~vi ..

OBJECT SRE

Join Start
Queue Service

Figure 3. OBJECT-SERVER INTERACTION

Entities, Events and Time

16. An entity will normally be an object, person or
conceptually solid 'thing'. Events will normally be actions,
processes or occurrences, each with an associated time of
occurrence. Entities have attributes and are processed through
events which may influence those attributes. Typically an entity
could be a customer in a shop, an item being manufactured, an
aircraft in flight, or a radar. An event could be the arrival of a
customer at a shop, an aircraft taking off, a radar scanning an
area.

17. To make use of such entities and events, time and time
handling are needed. With each entity there is associated a 'next'
event and a time at which that event will occur. Control of the
sequence of event and entity processing (in phase A) is through, a
list of forthcoming events, each event having an associated time and
entity. The list is scanned for the next event to occur and program
control transferred to that event after the list entry has been
removed.
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18. As indicated earlier, events can be in one of two classes.

Events in the first class are gathered together in Phase B and occur
at times that have been pre-determined. Events in the second class
are gathered together in Phase C and only occur as a results of a
set of events or conditions rather than at a time. Events which
follow at some time after an event or condition would generally be
classified as Phase B events.

Continuous Elements

19. Continuously varying parameters can be handled by one or
more of three methods:

a. introduce Phase B events to update values on a regular
or convenient basis;

b. introduce Phase C events to update as events dictate;
or

c. add components to Phase A which update values to
'current' simulation time; this enables the use of
these values in events occurring at that time.

A typical application of Method c is to advance all travelling
objects. Adjustments to rates and directions of travel can be made
using events.

Entity Attributes

20. Objects in a simulation need to have properties that can
be examined and altered. Their definition is left to the
programmer, but there must be a link to the SIMONE supervisory
system. This is provided by an additional attribute (of type
entityptr) that must be included with the type definition for each
entity. For example, some 'car' entities may be needed, each one
having an index number and a time of joining a queue. A suitable
PASCAL type definition might be:

type

cartype-record
e:entityptr;
join_q_time:real;

end;

When the variable 'cars' is defined, it may be declared as an array
of cartype, the array index being the car index number:

var
car :array(l..10] of cartype;



CSB Memo 2 8

21. The link to the supervisory system gives the entity some
'housekeeping' properties that allow identification of an event and
a time. These attributes are available through the 'entity ptr'
element and will be discussed later, but as an example, the time of
the next event to happen to car i would be accessed through:

carti].e^.time

Composite Entities

22. In the original SIMON, an entity was essentially a unique
object. Several objects with the same properties (excepting an
index number) were defined as group-entities. Originally it was
expected that each entity should only relate to a single event, but
early versions of SIMONE introduced the multiple group-entity (MGE)
which relates to several events. In the current version, apart from
one procedure, there is no specific coding for the MGE or group
entity, since an entity may be made to relate to any event, and
becomes a group entity simply by defining the relevant variable to
be an array. The concept of the group entity is still used in this
paper however, and the MGE implemented by a requirement to define
the relevant event for an entity when it is added to the list of
forthcoming events.
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DETAILS OF SIMONE

23. Having decided to adopt the discrete event three phase
approach to a simulation, the reader will need exact details of
SIMONE. The coding itself (Reference 7) is a good source of
information but since it is nearly 900 lines, a summary of the
salient points and some explanations may be needed. In addition
there is an example with discussion in the next section that may
help the novice user, particularly if this section is initially just
skimmed. A Glossary has also been included for the novice user.

Essential Entity Attributes

24. These attributes are defined in the SIMONE module in the
types entity ptr (simply a pointer to entity) and entity:

entity_ptr-^entity;
entity-record

refnum,memnum,typenum :integer;
time :real;

end;

Elements refnum and time give access to the event and its time of
occurrence, while memnum is the index number of the entity. In the
-cars example above, memnum could be set to the array index value.
Element typenum has been included for cases where more than one type
of entity can enter an event, although such situations should be
avoided where possible. The user can always expand the definition
of entity if required for a particular application.

25. Some of these attributes need to be defined in the
initialisation section if group entities are used. In addition it
is often convenient to hold a list of those that are not being
actively used by the simulation. For this purpose the procedure
ENTITY ELEMENT should be used, in which MEMNUM and TYPENUM are
defined, and the element is added to the end of a list. Using the
car example of the last section, coding could be:

declarelist(freecars,'free cars');
for i:-l to 10 do
entity_element(car[i].e,freecars,i,l);

The first line declares the list that holds cars not in active use.
The remainder takes the entity part of each car, adds it to the tail
of the list, sets its memnum to the car index number (i) and its
typenum to 1.

--- I
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Service Facilities

26. It is common for simulations to need certain facilities
that are not essential for control purposes. For example random
variates, statistics collection and presentation, and mathematical
functions such as interpolation. A reasonable range is provided by
SIMONE, but in part these services are based on facilities provided
on the VAX system - specifically the uniform random numbers, trig
functions in degrees, arc sin, arc cos, tan, a full 3600 tan, log
(base 10), and exponentiation (**).

27. Mathematical Functions. Table 1 gives details of the
SIMONE functions and procedures provided in addition to normal
PASCAL routines. Unless otherwise stated the results and parameters
are of type REAL.

Table 1. SIMONE EXTENSIONS TO PASCAL MATHS FUNCTIONS

FUNCTION COMMENTS

SGN(X) 0, +1 or -1 according to the sign of X.

RADS(X) Converts X degrees to radians.

DEGS(X) Converts X radians to degrees.

SINDEG(X) sin (X degrees).

ARCSIN(X) sin -  (X) rads.

COSDEG(X) cos (X degrees).

ARCCOS(X) cos-  (X) rads.

TAN(X) tan (X rads).

TANDEG(XY tan (X degrees).

FARCTAN(X,Y) The arc tan of (Y/X), with quadrant selection
based on the signs of X and Y.

LOG10(X)
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28. Cumulation. Coding in PASCAL can involve long
concatenations of elements. For this reason it is convenient to
have some simple procedures that increment and cumulate. Those
available are listed in Table 2. The overhead in optimised VAX
PASCAL for using these procedures is nil because the compiler takes
single line subroutines to be 'in line subroutines', where the call
is replaced by the body of coding.

Table 2. SIMONE EXTENSIONS TO PASCAL MATHS PROCEDURES

PROCEDURE COMMENTS

INCR(I) Integer parameter is incremented by 1.

INCRR(R) Real parameter is incremented by 1.

CUM(I,J) Integer parameters. I is increased by J.

CUMR(X,Y) Real parameters. X is incremented by Y.

29. Interpolation. The three functions that are available for
interpolation use linear interpolation, and produce real values
(Table 3). The first is R2PTINT which produces the Y value
corresponding to an X value, given X and Y values on each side. The
second is INTERPOLATE which produces the Y value corresponding to an
X, given a vector of X values and an associated Y vector. Vector
element indexes run from 0 to the constant TABLE SIZE (currently
10). The vectors must be declared by the user as being of type
RTABLE. The third is interpolate_1 which interpolates from an
ordered list of any size. The list must be declared in the VAR
section, of type datalist and declared in the coding with procedure
declaredata-list. Data may then be added (in order, x increasing
or x decreasing) using adddatum and add datax where X is 2-5.
These procedures operate on a 'push-down' list where the first entry
(xl,yl) is the furthest from the top of the list.
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Table 3. INTERPOLATION AND RELATED SUBROUTINES

SUBROUTINE PARAMETERS AND COMMENTS

R2PTINT Xvalue, Xlower, Xupper, Ylower, Yupper

INTERPOLATE Xvalue, Xtable, Ytable

INTERPOLATEL listname, X value

DECLAREDATA LIST listname, 'listname'

ADD DATUM listname, x,y

ADD DATA2 listname, xl, yl, x2, y2,
-ADD_DATA5 All four procedures use ADDDATUM.

30. Random Variates. Most simulations use random numbers
drawn from an appropriate distribution. When the distribution is
not uniform they are called random variates. Mostly, random
variates are obtained from the uniformly distributed random numbers
using transformations, resampling schemes or by combining random
numbers. If the uniform generator used does not produce numbers
with suitable properties, this may well affect all the distributions
from which the variates are actually drawn.

31. A pseudo-random number generator is generally provided in
most computers. It is probably wise to check that the numbers
produced do in fact have a reasonable range of properties. Many
tests are available, some of which are in Knuth (Reference 4) and
McMillan (Reference 5).

32.. Uniform Random Numbers. The VAX version of SIMONE
produces numbers through function RAND(X) where X is a seed. In
general the seed value should not be assigned a value after the
initial setting, since the function uses it to produce the next
number. Exceptions to this general rule implemented in the function
RANDOM allow sequence re-use and antithetic number generation. The
starting seed should be a complicated number, since simple ones can
produce abnormal serial correlations. Function 'ETSEED produces a
suitable starting seed given a simple starting seed. A different
seed will be produced for each call to it so a number of separate
streams can be set up. To ensure that results can be replicated
care must be taken to set the variable SEED to some non-zero
starting value and to initialise all streams before using any of
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them. In order to have some useful properties available to each
stream a RANDOM NUMBER TYPE record has been defined. It allows
sequences to be repeated, and antithetic sequences to be generated

(the antithetic of U is 1 - U for 0 U 1). A further property
enables these options to be bypassed totally. Table 4 gives details
of the record elements.

Table 4. RECORD RANDOMNUMBER TYPE

ELEMENT COMMENTS

Current seed

Startingseq seed Current seed is set to this value when the
sequence is to be repeated.

Start seq When TRUE it is set to FALSE and
starting_seq_seed is set to current seed.

Reuse seq When TRUE it is set to FALSE and the current
seed re-set.

Quick When TRUE no tests are done for sequences or
antithetics.

Antithetic When TRUE, antithetic numbers are produced
if re-using a sequence.

Antithetic2 TRUE when antithetic is TRUE and a sequence
is being re-used.

33. For each random number stream that is needed, a variable
of the appropriate type should be declared. These variables can be
initialised by calling procedure INIT SEED for each one. A call to

GET SEED is included. To use the streaming, sequencing and
antithetic facilities, function RANDOM should be used when
generating uniform random numbers.

34. To re-use a sequence of numbers, the seed in use is set
back to the value it had at the start of the sequence. This point

must be defined by ensuring element STARTSEQ is TRUE at that time.
At the re-use time, element REUSESEQ must be set to TRUE.
Production of antithetic variables will require both of these
elements and element ANTITHETIC must be TRUE during the re-use. To
bypass the tests for these factors QUICK should be TRUE. Typically

the following might be seen in a program:

| I I I-.--.'I-- - - - - -II



CSD Memo 2 14

var
rn:random number type; x:real;

rn.start seq:-true; x:-random(rn);

rn.reuseseq:-true; x:-random(rn);

35. Non-Uniform Random Variates. All of the distributions
available are listed in Table 5 and have been tested using the VAX
generator. Mostly the algorithms have been drawn from Knuth
(Reference 4) although the Beta comes from Schmeiser and Babu
(Reference 6) with corrections (McMillan) as well as from Knuth.
They all produce a single real number unless otherwise stated, and
require a parameter variable of type RANDOM NUMBER TYPE. Other
parameters are real. The coding usei for the Gamma distribution was
chosen because the results accord with theoretical moments. Small
changes in the higher moments can have disproportionate effects on
the Beta distribution which sometimes calls the Gamma.

36. Statistics Collection. Many forms of data collection are
used to obtain the required information from a model. One of the
most common is the histogram, to which the simulation adds new
observations from time to time. SIMONE provides procedures to set
up the histogram, add values to it and to print it out along with
its mean, variance and standard deviation (Table 6).

37. Initially the user must declare a variable for each
histogram, of type HISTOG, and in procedure HISTOGRAM should declare
its size (i.e. number of cells excluding the 'off the bottom' and
'off the top' buckets), its lowest collected value and the width of
each cell.

38. Since the histogram is held as a linked list, there is no
limit to the size of the histogram, and hence its accuracy.
Non-linear cell size requirements need to be handled by the user,
and transforms (e.g. log) on the values added to the histogram may
be the answer. The procedures are sufficiently small and simple
that specialised alterations should be practical.

i.

..- - n_ _ __II I J J I
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Table 5. SUBROUTINES RELATED TO RANDOM VARIATE DISTRIBUTIONS

FUNCTION PARAMETERS COMMENTS

Poisson Mean, RN Gives an integer result.

Normal Mean, SD, RN

Expdeviate Mean, RN Exponentially distributed variates.

Gamma Mean, variance, RN Gamma density kx*-lexp(-x/b) (mean
ab and variance ab2 ).

Chi squared Mean, RN Gamma (mean, 2* mean, RN).

Setupbeta p, q, C, D The specific parameters of the beta
(procedure) X, F, L distribution must be known and'a

A, PP call to this procedure made to set
up the required constants. The
density is kx**(p-1).(l-x)**(q-l)
and the variate is scaled as Cx+D.
The other parameters must be real
arrays of size 1..5 (X, F, L) or
..10 (A, PP).

Beta X, F, L, A, PP, RN Parameters as defined above. The
mean is Cp/(p+g)+D and the variance
is Cl.pq/(p+q)'(p+q+l).

Sample DISTX, DISTY, RN Samples from a distribution defined
in DISTX and DISTY, type RTABLE -
array [0..TABLE SIZE 10] of real.
The X values must start at 0 and
finish at 1. An interpolated Y
value is produced.

Sample_l distlist,RN Samples front a distribution defined
using the ordered data lists
described in the interpolation
section. The X values must include
0 and 1.
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Table 6. STATISTICS COLLECTION PROCEDURES

PROCEDURE PARAMETERS COMMENTS
AND TYPE

HISTOGRAM Sets up the necessary structures and
initial values for a histogram.

Table: HISTOG Actual parameter must have been
declared in the users VAR section.

S: Real Size of histogram excluding out of

bounds buckets.

1: Real Lowest cell value.

w: Real Cell width.

ADDTO Table: HISTOG Increments the count in the cell
Val: Real whose lower value is less than 'val'

and whose upper value is not greater
than 'val'.

WRITEHIST F: Text Outputs to file F the title (T) and
Table: HISTOG the contents of 'table' as well as
T: String its mean etc. Each cell takes one

line.

List Handling

39. Apart from the demands of the SIMONE supervisory system
for lists, simulations frequently have queues which can also be
treated as lists. Relevant subroutines are listed in Table 7. In
this implementation, apart from the histograms and data lists, only
lists of entities are available, although extensions to other things
should be possible.

40. Every queue or list must be declared as a variable of type
LIST and must be set up using DECLARELIST. This procedure demands a
name for the list so that associated error messages are
significantly clearer.

41. The structure of a list is an information cell
(identifying size and name, and a pointer to the head of the list),
and list elements. Each list element points to both the next and
previous elements in the list which is taken to be fully circular (a
list of 1 will point to itself). Thus the 'previous' element to the
first is the last element, and the 'next' element to the last is the
first. in addition, each element points to an entity. Figure 4
illustrates this.

fiist -nadtoec lmn onst nett.Fgr
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42. Given this structure it becomes clear that one may rotate
a list (in either direction) simply by changing the element that 4
'head' points to. Also, determining the head or tail of the list is

quite straightforward.

43. Removing elements from a list is achieved through BEHEAD

or BETAIL (which uses BEHEAD and a reverse rotation). On removal,
links are suitably re-organised and the removed element returned to
general computer storage with a 'dispose' instruction. The user may
remove other elements by rotating, beheading and then restoring the
original order with reverse rotation. If a particular entity needs
to be removed from a list (rather than a list element) the procedure
DELETE can be used. The list is rotated until the relevant item
appears at the top, it is beheaded, and then rotated back to its
original position.

44. Adding elements to the list is achieved through ADDLAST or
ADDFIRST (which uses ADDLAST and a reverse rotation). Elements
which are added must have an entity associated with them through one
of the procedure parameters. Using the earlier example (Entity
Attributes section) the cartype element e would be used.

Table 7. LIST SUBROUTINES

SUBROUTINE TYPE PARAMETERS COMMENTS

DECLARSLIST Proc LIST, name

TAILOF Func LIST Type list element pointer
ROTATE Proc LIST, number number - -1 puts the tail at

the head. Number can take any
integer value.

BEHEAD Proc LIST

DETAIL Proc LIST

ADDLAST Proc M, LIST M must point to an entity.

ADDFIRST Proc M, LIST As ADDLAST.

VIEW Proc LIST Used for debugging. Outputs a
list name, size and element
entities times, member and
event numbers.



19 CSB Memo 2

Supervisory Facilities

45. Control of time and event sequencing is achieved using a
list called TIMEQ. Individual entities are added to this list
through ADDTOTIMEQ which has parameters identifying the entity, the
number of the event and the time of occurrence. For convenience,
procedure ADDHDTOTIMEQ uses the head of a (nominated) list to
identify the entity. Procedure SCAN looks through the times of the
entities in TIMEQ for the smallest, stopping at the first one equal
to CLOCKTIME, if any. The 'head' pointer of TIMEQ is set to point
to the selected list element. Thus after SCAN is called, it is
useful to set a variable of type entity_ptr to point to the relevant
entity, thereby giving easy access to its information. For example,
if such a variable is entp:

entp:-timeq.head^.item

then access to time, refnum and memnum are through the simple
concatenations entp .time etc.

46. It should be noted that events for a single entity cannot
be 'queued' because the next event number and its time are part of
the entity data structure.. If it is necessary to have an
interleaving of events occurring to an object, then additional
entity pointers should be set up in the record structure of the
object. For example the cartype definition in the Entity Attributes
system could have e as an array of entity ptr. Each pointer would
then reference its relevant event.

.I. .- & ,
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EXAMPLE

47. To illustrate the use of SIMONE a car servicing station
will be simulated. Cars arrive, are serviced and then exit. If the
station is busy, cars will queue and statistics on queuing time will
be collected. The arrival rate for cars will be exponential with a
mean of 10 for the first 300 and then 30. Service time will be
gamma with a mean of eight and a standard deviation of four
(variance - 16). The station will close at the first moment after
300 when it has no more work. The B-phase events are:

Bl : a car arrives

52 : a car exits

B3 : arrival rate reduces

There are two C-phase events:

Cl : to service a car

C2 : to stop the simulation when the last car has been
serviced after time 300.

48. The flow diagrams for Bi to B3 and C1 to C2 are in
Figures 2, 5 to 8 respectively. The object-server interaction
diagram of Figure 3 also describes the situation.

Server is set to 'free'I

V

I --

Figure 5. EVENT B2: CAR EXITS FLOW DIAGRAM

I- .n ,
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Alter the inter-arrival rate meani

Set Station ready to close to TRUE]

Figure 6. EVENT B3: INTER-ARRIVAL RATE REDUCES

Server is set to busy'

-I
Determine the time of
ending service and set

an 'exit' event to occur

7-V
I

Cumulate the queuing
statistics

I
[Remove the head of the queuej

V

Figure 7. EVENT Cl: SERVICE FLOW DIAGRAM
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If station ready to close
and there are no cars queuing

or being served stop the
simulation

I
V

Figure 8. EVENT C2: STOP THE SIMULATION

49. To reduce mistakes and enhance debugging, the CONST
section may be used for key numbers. In particular, B events which
must be numbered (since REFNUM is an integer) may be given a name in
CONST. An alternative to this is through ORD and an enumerated
list. In this example, the beginning of the program is as follows:

[INHERIT('SIMONE.PEN')]
program service cars;
CONST

arrive-i1;
exit-2;
reduce rate-3;
max-number of cars-10;

The first line allows access to the precompiled SIMONE subroutines
and the remainder is self explanatory.

50. The next section of program defines the types of variable
in use, and is where any enumerated lists would appear. In this
example, the only entity that is active is the car(s). While the
server is an active part of the problem (Figure 3) and could be an
entity, its involvement has become secondary because no statistics
about it are being collected. The server has thus become passive
and does not need entity status. The next part of the program is
therefore:

TYPE

cartype-record
e:entity_ptr;
join_q_time:real;

end;

I/ - I m I I II I
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The link to SIMONE is through e, and apart from an index number, the
only property that cars will need is the time that they joined the
queue. Definition of the variables must follow, and should include
all his'tograms, queues, random number streams, etc. Variables
already declared by SIMONE are SEED, LEASTTIME, CLOCKTIME, ERROR and
TIMEQ. The next part of the program is:

VAR
car:array[l..max number of cars] of cartype;
rate_change:entityptr;
server_busy, simulationrunning, readyto_close:boolean;
freecars, queue:list;
mean inter arrival time:real;
rn:random number type;
queueing-times:histog;
nextitem:entity-ptr;
i:integer;

51. Most of these variables are self explanatory, but of note
are 'ratechange' which is the entity that allows event 83 to occur,
'freecars' which is a list of cars not actively involved (i.e. not
queuing or being serviced), 'irn' which is the random number stream
and 'next item' which is a variable of convenience mentioned in the
Supervisory Facilities section (as entp). Variable 'car' has been
given a size of 10 (max number of cars) simply because it is not
expected that more.than that number will be active in the simulation
at any one time. Cars which have been serviced will re-enter the
free cars list and may be re-used as necessary. Statistics on
waiting times will be collected as they arise, in 'queuingtimes'.

52. Definitions having been made, initialisation follows:

Begin
(Initialisation section) (line number)
seed:-12345; (1)
Initseed (rn); (2)
Declarelist (timeq,'timeq'); 13)
Declarelist (freecars,'free_cars'); (4)
Declarelist (queue,'queue'); (5)
Histogram (queuing_times,10,0,4); (6)
For i:-i to max number of cars do (7)
entityelement (car1i].e,free cars,i,l); (8)

Addhdtotimeq (freecars,arrive,O); (9)
Behead (freecars); (10)
New(ratechange); (11)
Addtotimeq (rate_change,reduce_rate,300); (12)
Serverbusy:-false;
Ready_to_close:-false;

I4
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Mean inter arrival time:10;
Clocktime:-O;
Simulationrunning:-true;
(end initialisation section)

Lines 1 and 2 define the starting point of the random numbers and
set up the stream to be used. Lines 3 to 5 set up all lists and
queues to be used, particularly including the TIMEQ. Line 6 sets up
the histogram with 10 cells (plus out of range buckets) starting at
0 and having a width of 4. Lines 7 and 8 declare each element of
the car array to be a single entity and put it into the free-cars
list. The entity index (memnum) is the same as its array index (i)
and its type number (typenum) is 1. The type number is irrelevant
in this example. Lines 9 and 10 take the first car from the
freecars list and put it into the timeq for the 'arrival' B event
(B1) which will occur at time 0. Lines 11 and 12 sets the 'reduce
rate' variable and set its event (B3) to occur at 300. The
remaining lines need no further explanation.

53. The next section of code is the A-phase:

repeat(.until simulation running is false)
scan(timeq);
next item:-timeq.head-.item;
lasttime:-clocktime;
clocktime:-next item^.time;
repeat
behead(timeq);
case next item .refnum of

(B-phase events)

end(case);
scan(timeq);
nextitem:-timeq.head^.item;

until next item'.time <> clocktime;

It should be noticed that the phase A code surrounds phase B. This
is necessary so that all events occurring at any one time happen
before entry is made to the phase C. Setting lasttime to clocktime
before advancing time allows elapsed time to be calculated if
needed, thus immediately before 'repeat' is the point at which any
continuous variables in the model should be updated.
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54. The phase B events follow, and are clearly identified by
using the appropriate constant as the 'case' label and indentation.

arrive:
begin

addlast(next -item, queue);
car(next-item^.memnuml.join_q_time:-clocktime;
addhdtotimeq( frescars,arrive,clocktime.

exp deviatef mean -inter-arrival tinae,rn);
behead(freecars);

end;

exit:
begin

server busy: -false;
addfirst(next-item,freecars);

end;

reduce-rate:
begin
mean inter arrival time:-30;
ready-to-close :-t rue;

end;

55. Finally the C-phase events coding and end of simulation
output is as follows:

(Cl) if (server-busy-false) and (queue.size>O) then

begin server busy:-true
addhdtotimeq(queue,exit,gamma(8,4,rn)+clocktime);
addto(queuing-times,
clocktime-car~queue.head^ .item .memnuml .join q time);
behead( queue)

end;

(C2) If (ready_to_close) and (queue.size-O) then

simulation-running:-false

until simulation running-false;

writehist(queuing times);

end.
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56. There are other ways to achieve the same result, but this
illustrates the general structure and requirements that most
simulations will follow. Of particular importance are the need to:

a. schedule new events;

b. have an entity associated with that event;

c. add clocktime to the interval to the next occurrence

of an event;

d. 'behead' queues (including the timeq) when the element
is no longer needed; and

e. ensure that the phase A structure allows the
occurrence of all phase B events at any one time
before entering phase C.
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SUMMPARY

57. The general discrete event simulation structure required

by the SIMONE supervisory system has been described. It requires
phase A to control time, phase B to handle events that occur
following the passage of time and phase C to handle events that

occur as a result of conditions being met. Some advantages of using
this approach have also been mentioned, that is its portability,

flexibility, ease of use and structured programming approach.
Principle differences between discrete event and continuous

modelling processes and available functions have been canvassed, and
the point within phase A at which continuous elements in a
principally discrete event model should be inserted has been
identified.

58. General facilities provided by SIMONS have been detailed.
They include entity and list or queue handling, statistics
collection and display plus random number and random variate
production, as well as extensions to the standard Maths functions
provided by PASCAL.

59. The formal flow diagram of SIMONE has been given, and the
ways in which conventional flow diagramming fit within this

structure illustrated.

60. Finally a very simple example has been used to show how
the system can be used in practice.

_________________________i~-
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GLOSSARY

Antithetic Given a value with cumulative
probability of occurrence p, its
antithetic is that value associated
with the cumulative probability of
occurrence 1-p.

Composite Entity Group entity or multiple group entity.

Continuous Models Time progresses evenly and events play
little spectific part.

Cumulation Creation of a running total.

Discrete Event Models Time progresses by convenient leaps
(often of different sizes) on an event
by event basis.

Entity An object or thing to which events
occur.

Events Instantaneous happenings that often
mark the start or finish of processes,
when entity attributes change.

Group-Entity A collection of entities of identical
type and properties.

Interpolation Knowing values for two locations,
estimating the value at a third
location between the first two.

Linear Interpolation Interpolation assuming a straight line
between the known values.

List An ordered sequence of things.

Multiple Group-Entity (MGE) A group-entity that can have several
jdifferent B events occur to it.

Phase A Controls time advancement and event
selection.

Phase B Contains tine dependent events.

Phase C Contains conditional events.
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Pointer The value in a PASCAL variable of this

type refers to a memory location.

Queue Almost synonymous with list.

Generally applied when the 'things'
are entities.

Random Number A real number in the range 0 to 1

having all values equally likely.

Random Variate A randomly chosen value with a

probability of occurrence that
conforms to a selected distribution.

Seed A value needed by a pseudo random
number (prn) generator to create a
prn.

Supervisor A controlling authority.

Timeq A list of forthcoming events as
implemented in SIMONE.

F
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